A study on the mask of interpolatory symmetric subdivision schemes

نویسندگان

  • Kwan Pyo Ko
  • Byung-Gook Lee
  • Gang Joon Yoon
چکیده

In the work, we rebuild the masks of well-known interpolatory symmetric subdivision schemes-binary 2n-point interpolatory schemes, the ternary 4-point interpolatory scheme using only the symmetry and the necessary condition for smoothness and the butterfly scheme, and the modified butterfly scheme using the factorization property. 2006 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face-based Hermite Subdivision Schemes

Interpolatory and non-interpolatory multivariate Hermite type subdivision schemes are introduced in [8, 7]. In their applications in free-form surfaces, symmetry properties play a fundamental role: one can essentially argue that a subdivision scheme without a symmetry property simply cannot be used for the purpose of modelling free-form surfaces. The symmetry properties defined in the article [...

متن کامل

A constructive algebraic strategy for interpolatory subdivision schemes induced by bivariate box splines

This paper describes an algebraic construction of bivariate interpolatory subdivision masks induced by three-directional box spline subdivision schemes. Specifically, given a three-directional box spline, we address the problem of defining a corresponding interpolatory subdivision scheme by constructing an appropriate correction mask to convolve with the three-directional box spline mask. The p...

متن کامل

Interpolatory Subdivision Schemes Induced by Box Splines

This paper is devoted to a study of interpolatory refinable functions. If a refinable function φ on Rs is continuous and fundamental, i.e., φ(0) = 1 and φ(α) = 0 for α ∈ Zs\{0}, then its corresponding mask b satisfies b(0) = 1 and b(2α) = 0 for all α ∈ Zs\{0}. Such a refinement mask is called an interpolatory mask. We establish the existence and uniqueness of interpolatory masks which are induc...

متن کامل

A New Class of Non-stationary Interpolatory Subdivision Schemes Based on Exponential Polynomials

We present a new class of non-stationary, interpolatory subdivision schemes that can exactly reconstruct parametric surfaces including exponential polynomials. The subdivision rules in our scheme are interpolatory and are obtained using the property of reproducing exponential polynomials which constitute a shift-invariant space. It enables our scheme to exactly reproduce rotational features in ...

متن کامل

Noninterpolatory Hermite subdivision schemes

Bivariate interpolatory Hermite subdivision schemes have recently been applied to build free-form subdivision surfaces. It is well known to geometric modelling practitioners that interpolatory schemes typically lead to “unfair” surfaces—surfaces with unwanted wiggles or undulations—and noninterpolatory (a.k.a. approximating in the CAGD community) schemes are much preferred in geometric modellin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 187  شماره 

صفحات  -

تاریخ انتشار 2007